Redundant LNB systems minimize system downtime due to LNB failure by providing a spare LNB and an automatic means of switching to the spare upon failure of a primary LNB.
A 1:1 system provides one spare LNB for one primary LNB. A 1:2 system provides a spare LNB for either of two primary LNBs. The systems consist of an outdoor plate assembly which mounts at the antenna hub, an indoor control panel and interconnecting control cable.

System Block Diagram

Typical C-Band 1:2 LNB Plate Assembly

PLATE ASSEMBLY FEATURES:

- Norsat C-Band PLL or externally referenced LNBs
- High quality dual waveguide/coaxial switches
- Manual override
- Waveguide input flanges
- Transmit reject filter(s), input crossguide coupler(s), input isolators(s) and offline I/O options available
REDUNDANCY CONTROLLER FEATURES:
- 10/100 Base T Ethernet network interface
- Supports SNMP v1, v2c, and v3
- Rack-mount chassis, 19 " wide, $13 / 4^{\prime \prime}$ (1 RU) high
- Dual, redundant power supplies
- Manual or automatic operation
- Monitors unit currents, external alarms, or both
- Automatically switches RF path to standby unit when unit failure occurs
- User-selectable RS-232/-422/-485 serial I/O M\&C interface
- Parallel I/O M\&C interface
- Menu-driven user configuration of all options
- Front panel graphically depicts switch positions and unit status
- Worldwide universal AC input capability standard
- Audible alarm
- CE certified and RoHS compliant; EAR 99
- Monitor and Power Tracking Unit in monopulse systems

System Specifications (1)

Parameter	Notes	Specification
Input Frequency Range		3.40 to 4.20 GHz
Output Frequency Range		950 to 1750 MHz
External Reference (2)	10 MHz	-5 dBm min., +5 dBm max.
Local Oscillator Frequency		5.15 GHz typical
Noise Temperature, System	$\mathrm{At}+23^{\circ} \mathrm{C}$ Versus Temperature	See Table 1 See Table 2
Gain	Standard LNB	59 dB min., 61 dB typical
Gain Flatness		$\pm 0.5 \mathrm{~dB}$ per 27 MHz
Gain Stability		$\pm 0.2 \mathrm{~dB}$ max., per day, constant temperature $-0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ versus temperature
VSWR	Input, no isolators(s) Input, with isolators(s), Input, with isolators(s) and Tx reject filter(s) Output	2.20:1 typical 1.25:1 typical, 1.30:1 max.. 1.30:1 typical, 1.35:1 max. 1.50:1 typical, 2.00:1 max.
Power Output at 1dB compression ($\mathrm{P}_{1 \mathrm{~dB}}$)		+2 dBm min., +5 dBm typical
$3^{\text {rd }}$ Order Output Intercept Point (OIP_{3})		+12 dBm min., +15 dBm typical
Frequency Stability	-40 to $+60^{\circ} \mathrm{C}$	$\pm 10 \mathrm{kHz}$
Phase Noise	100 Hz offset 1 kHz offset 10 kHz offset 100 kHz offset	$-55 \mathrm{dBc} / \mathrm{Hz}$ typical $-75 \mathrm{dBc} / \mathrm{Hz}$ typical $-85 \mathrm{dBc} / \mathrm{Hz}$ typical $-95 \mathrm{dBc} / \mathrm{Hz}$ typical
Maximum Input Power	Without damage	0 dBm max.
Desensitization Threshold for $13.75-14.50 \mathrm{GHz}$	No Tx filter(s) With Tx filter(s),	-10 dBm max. +45 dBm max.
Connectors	RF Input RF Output Offline In, Coupler In Offline Out	CPR229G Waveguide Flange (Note 3) Type N Female (50 ohm) (Note 3)
Temperature Range	Switch Plate Assembly	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
(1) System specifications depend on choice of LNB and various options. Specifications shown are for a typical system using commercially available LNBs. Order LNBs separately by model number or frequency range. (2) Applicable to systems using externally referenced LNB models. (3) Type F Female (75 ohm) or Type N Female (50 ohm).		

Part Number Ordering Information

 BRC-
$\square 1100=1: 1$ System
$\square 1200=1: 2$ System

* Specify LNB Model number: \qquad (Order separately.)

Options Available:

- Cable length \qquad ft or \qquad m

LNBs* * Controller	Plate 2	Assy	O\&M Manual	Test 3	1

\square Remote Control Panel (RCP)

- Cable for Remote Panel:
\qquad ft or \qquad m (Up to 4000 ft [1200 m] in 50 ft [15 m] increments)
- Additional O\&M Manuals, Oty.: \qquad
$\square \pm 48$ Vdc Power Option - 40 dB (standard), \qquad dB (custom)

Offline LNB Input/Output Ports
Table 1 - Typical System Noise Temperature with Various Options (Add to Tlnb)**

Table 2 - Noise Temperature vs. Ambient Temperature

Noise temperature vs. ambient temperature can be found from the equation,

$$
N T_{2} / \mathrm{NT}_{1}=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{n}
$$

```
where:
    NT2 = Noise Temperature at T2
    NT
    T
    T1 = Temperature 1 in K
    n = 1.5 for the LNBs or = 1.0 for passive losses
```

For the case where $\mathrm{T}_{1}=296 \mathrm{~K}\left(+23^{\circ} \mathrm{C}\right)$, the ratio $\mathrm{NT}_{2} / \mathrm{NT}_{1}$ is shown in the table below for both LNBs ($\mathrm{n}=1.5$) and for passive losses ($\mathrm{n}=1.0$):

Ambient Temperature $\mathbf{T}_{\mathbf{2}}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{n}=\mathbf{1 . 5}$ $\mathbf{N T}_{\mathbf{2}} / \mathbf{N T}_{\mathbf{1}}$	$\mathbf{n}=\mathbf{1 . 0}$ $\mathbf{N T}_{\mathbf{2}} / \mathbf{N T}_{\mathbf{1}}$
0	0.89	0.92
+23	1.00	1.00
+40	1.09	1.06
+50	1.14	1.09
+60	1.19	1.13

Example: \quad For a 1:1 system with Tx filter and 30 K LNBs, $\mathrm{T}_{\text {LNB }}=30 \mathrm{~K}$ at $+23^{\circ} \mathrm{C}$ and passive losses $=15 \mathrm{~K}$ at $+23^{\circ} \mathrm{C}$; thus, $\mathrm{T}_{\text {SYs }}=45 \mathrm{~K}$ at $+23^{\circ} \mathrm{C}$. What is $\mathrm{T}_{\text {SYs }}$ at $+50^{\circ} \mathrm{C}$?

From the table, $\mathrm{NT}_{2} / \mathrm{NT}_{1}$ at $50^{\circ} \mathrm{C}=1.14$ for the LNBs and 1.09 for the passive losses:
$\mathrm{NT}_{2}=1.14 \times(30 \mathrm{~K})+1.09 \times(15 \mathrm{~K})=34.2 \mathrm{~K}+16.4 \mathrm{~K}=50.6 \mathrm{~K}$ at $+50^{\circ} \mathrm{C}$.

Redundant System Controller

1:2 Redundant System Controller, Model RSC12V1-AC
The RSC series redundant system controllers for 1:1 and 1:2 systems directly power the LNAs and monitor the output voltages and currents to detect faults. The RSC can also mointor external alarm signals or a combination of output currents and external alarm inputs. Upon detecting a fault, the RSC transfer switch to activate the spare unit.

The RSC offers monitoring and control of auxiliary RF hardware; remote monitor and control via network, serial interface, or parallel I/O; flexible configuration of system behaviour; remote disable of local controls for security; and the ability to detect and report certain failures within the controller itself.

A second RSC can be linked to a primary RSC to provide full system control from an alternate control site. When set up this way, the secondary RSC is referred to as a remote control panel, or RCP. The configuration and settings of the primary RSC are transferred to the RCP, which then mimics its controls and interfaces. This permits system operation from a location that is up to 4000 ft . (1200 m) distant from the primary controller.

Controller Specifications

Unit Status Monitor Methods	Controller monitors unit bias current; alarm is generated if current goes outside of allowed tolerance window (LNA or LNB systems). Controller also monitors external alarm inputs (SSPA and other systems) or combinations of both internal unit current and external alarm inputs.
Unit Current Window Width	$\pm 5 \%$ to $\pm 25 \%$ of nominal; user selectable in 5% steps (applies to all monitored unit currents)
Switchover Time	100 ms maximum
Unit Power Outputs	+14.3 to $+15.0 \mathrm{Vdc}, 700 \mathrm{~mA}$ maximum
Switch Drive Outputs	-22 to -28 Vdc, 2 A maximum
External Alarm Inputs	Optionally up to one per unit; require sinking 5 mA at 5 Vdc to negate alarm
Serial I/O Interface	RS-232/RS-422/RS-485 2- or 4-wire; user selection
Parallel I/O Interface	Control inputs: Contact closures to ground; require sinking 20 mA at 15 Vdc Status outputs: Form 'C' dry contacts; $100 \mathrm{Vdc}, 0.5 \mathrm{~A}, 3 \mathrm{~W}$ max (resistive load)
Controller Dimensions	19" (483 mm) W x 1.72" (43.7 mm) H x 17.5" (445 mm) D; $7.6 \mathrm{lb}(3.4 \mathrm{~kg}$)
Chassis Slides	Standard. Radio relay rack-mount brackets available on request.
Cable Length to Plate Assy	Order cable separately. $100 \mathrm{ft}(30 \mathrm{~m})$ to $250 \mathrm{ft}(75 \mathrm{~m})$ lengths in $50 \mathrm{ft}(15 \mathrm{~m})$ increments are standard; other lengths (up to 500 ft or 150 m) are available by special order.
AC Input (standard)	100-135 or 180-240 Vac, 47-63 Hz, 100 W ; Dual AC inputs and dual redundant power supplies.
Temperature Range	Operating: 0 to $+50^{\circ} \mathrm{C}$ (indoor equipment environment) Storage: $\quad-40$ to $+70^{\circ} \mathrm{C}$
Reliability	MTBF: 48,200 hours; MTTR: less than 30 minutes with spares and proper technical person.

Controller Front Panel Controls and Indicators

Unit Status Alarms	LED Indicators glow green when OK, red when a fault is detected.
PS Indicator	Glows red to show fault with either dual redundant power supply.
Panel Test	Pushbutton lights all indicators \& tests audible alarm.
RF Switch Pushbuttons and Indicators	Pushbuttons are used to manually switch units. Front panel indicators show which units are on-line. Unit indicators light red to show faulted units. In a typical 1:1 system, Unit 1 is the primary unit and Unit 2 is on standby. In a 1:2 system, Unit 1 is the primary unit for Pol 1 and Unit 2 is the primary unit for Pol 2 . Unit 3 is on standby and can be selected for either Pol. In a dual 1:1 system, Unit 1 is the primary unit and Unit 2 is on standby for Pol 1; Unit 3 is the primary and Unit 4 is on standby for Pol 2.
Auto/Manual Switch and Indicators	In Auto mode, a unit failure initiates automatic switchover to the standby unit. In manual mode, the on-line unit can be selected from the front panel or by serial I/O, parallel I/O or network command.
Remote/Local Switch and Indicators	Selects local (front panel) control, or remote control from serial I/O, parallel I/O, or network. An optional second RSC, configured as a Remote Control Panel, provides the means to operate the system from a physically distant, alternate location.

Controller Rear Panel Interfaces

$\begin{aligned} & \text { J1, J2 - LINE 1, LINE } 2 \\ & \text { (IEC 320-C14) } \end{aligned}$	Dual power entry modules contain the AC line input connectors. System can be powered from separate AC lines if desired. Either or both power supplies are capable of operating the system.
J3 - PLATE ASSY (37-pos D, Female)	Cable to plate assembly carries unit power (for line drivers, LNAs or LNBs) and switch drive signals. Order cable separately. Standard lengths are $100^{\prime}(30 \mathrm{~m})$ to 250 ' $(75 \mathrm{~m})$ in $50^{\prime}(15 \mathrm{~m})$ increments; other lengths are special order. An adapter cable mates the controller to legacy system cables.
J6 - SERIAL I/O and J7 - SERIAL LOOP (9-pos D Female)	RS-232/RS-422/RS-485 connector for user M\&C System. Commands provide monitoring, controlling, and configuration. Interconnect cable lengths to $4000 \mathrm{ft}(1200 \mathrm{~m}$) with RS-422 or RS485. A serial loop connector provides a convenient connection for daisy-chained systems.
J5 - REMOTE LINK (9-pos D Male)	For connection via a proprietary RS-422 link (up to $4000 \mathrm{ft} / 1200 \mathrm{~m}$) to an optional, second RSC, which duplicates Local control functions at a secondary site.
$\begin{aligned} & \text { J9 - NETWORK } \\ & \text { (RJ-45) } \end{aligned}$	10/100 Base T Ethernet connection port via standard RJ-45 connector. Supports SNMP v1, v2c and v3.
J4 - EXT ALARM (9-pos D Female)	External Alarm inputs. Substitute for or combine with internal unit current monitor alarms. Allows an external signal to indicate unit failure. Unused inputs can be used as status inputs to M\&C system.
J8 - PARALLEL I/O (37-pos D Male)	Parallel I/O (discrete logic) connection for limited control and monitoring of the system. Form 'C' relay contact outputs (1:2 system example):

1:1 Plate Assembly Outline Drawing, with Various Options Installed

1:2 Plate Assembly Outline Drawing, with Various Options Installed

Communications \& Power Industries

SMP Division

Satcom Products
tel: +1 (669) 275-2744
email: satcommarketing@cpii.com
web: www.cpii.com/satcom

For more detailed information, please refer to the corresponding CPI technical description if one has been published, or contact CPI. Specifications may change without notice as a result of additional data or product refinement. Please contact CPI before using this information for system design.
© 2021 Communications \& Power Industries LLC. Company proprietary: use and reproduction is strictly prohibited without written authorization from CPI.

