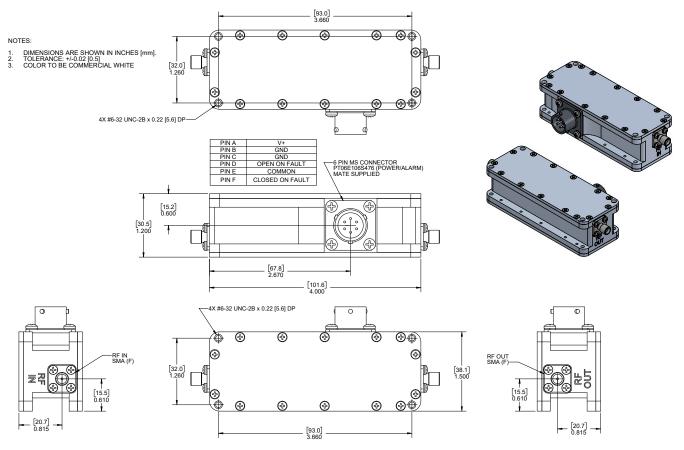
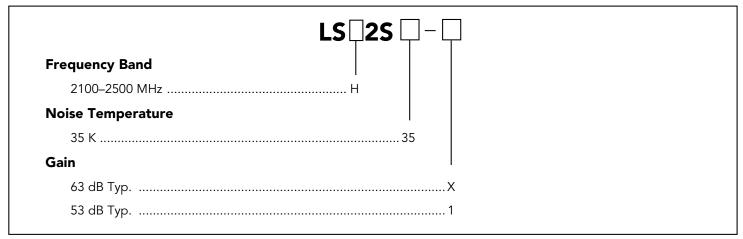
LSH2S series S-Band Low Noise Amplifiers are specifically designed for satellite earth station receiver front ends and other telecommunications applications.


Utilizing state-of-the-art MMIC technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures as low as 35 K. Noise temperature specifications are quaranteed over the full bandwidth of the LNA.

FEATURES:

- State-of-the-art noise performance
- MMIC design
- Internal regulator
- Reverse polarity protection
- High reliability
- Fault alarm

Outline Drawing



LSH-2000 Series		Specifications/Part Number Ordering Information	
Parameter	Notes	Specification	
Frequency Range	Band "H"	2100 to 2500 MHz	
Gain	-X -1	60 dB min., 63 dB typical, 66 dB max. 50 dB min., 53 dB typical, 56 dB max.	
Gain Flatness		±0.5 dB max. over the full band ±0.25 dB max. per 10 MHz	
VSWR	Input Output	1.50:1 typical, 1.75:1 max. 1.50:1 typical, 1.75:1 max.	
Noise Temperature (1)		See Table 1 for maximum, at +23°C See Table 2 for typical, versus temperature	
Power Output at 1dB compression (P _{1 dB})		+10 dBm min., +13 dBm typical	
3 rd Order Intercept	Output, OIP ₃	+20 dBm min., +23 dBm typical	
Group Delay per 36 MHz	Linear Parabolic Ripple	0.05 ns/MHz 0.005 ns/MHz ² 1.0 ns peak to peak	
AM/PM Conversion		0.05°/dB typical, -5° dBm output power	
Gain Stability (Constant Temperature)		±0.1. dB max. Short term (10 min) ±0.2. dB max. Medium term (24 hrs) ±0.5. dB max. Long term (1 week).	
Gain Stability versus temperature		-0.04 dB per °C	
Maximum Input Power	Damage threshold	+10 dBm max.	
Connectors	Input, Output Power	SMA Female MS-6 pin (mate supplied)	
Power Requirements	Voltage Current	11 V min., 12 V typical, 15 V max. 190 mA typical, 220 mA max.	
Operating Temperature		-40°C to +60°C	

Table 1 - Part Number Ordering Information

Table 2 - Noise Temperature vs. Ambient Temperature

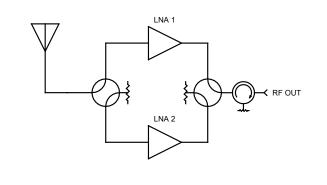
Noise temperature vs. ambient temperature can be found from the equation,

 $NT_2/NT_1 = (T_2/T_1)^{1.5}$

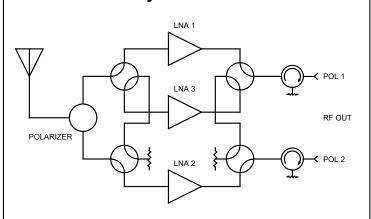
where:

 NT_2 = Noise Temperature at T_2 NT_1 = Noise Temperature at T_1 T_2 = Temperature 2 in K T_1 = Temperature 1 in K

 $(K = {}^{\circ}C + 273)$


For the case where T_1 = 296 K (+23 °C), the ratio NT_2 / NT_1 is shown in the table below:

Ambient Temperature T ₂ (°C)	Ratio NT ₂ / NT ₁
0	0.88
+23	1.00
+40	1.09
+50	1.14
+60	1.19


Example: For model LSH2535-X, $NT_1 = 35$ K at +23 °C; what is NT_2 at +50 °C? From the table, NT_2/NT_1 at +50 °C = 1.14: $NT_2 = 1.14$ x (35 K) = 40 K at +50 °C

Typical Applications

1:1 Redundant Systems

1:2 Redundant Systems

SMP Division
Satcom Products

tel: +1 (669) 275-2744

email: satcommarketing@cpii.com web: www.cpii.com/satcom

For more detailed information, please refer to the corresponding CPI technical description if one has been published, or contact CPI. Specifications may change without notice as a result of additional data or product refinement. Please contact CPI before using this information for system design.

© 2021 Communications & Power Industries LLC. Company proprietary: use and reproduction is strictly prohibited without written authorization from CPI.